PALS Algorithms

1. PALS Systematic Approach Algorithm
2. Management of Shock Flowchart
3. Recognition of Shock Flowchart
4. Management of Respiratory Emergencies Flowchart
5. Recognition of Respiratory Problems Flowchart
6. Pediatric Cardiac Arrest Algorithm
7. Pediatric Bradycardia With a Pulse and Poor Perfusion Algorithm
8. Pediatric Tachycardia With a Pulse and Adequate Perfusion Algorithm
9. Pediatric Tachycardia With a Pulse and Poor Perfusion Algorithm
10. Pediatric Postresuscitation Care
PALS Systematic Approach Algorithm

The PALS Systematic Approach Algorithm outlines the approach to caring for a critically ill or injured child.

Initial Impression
(consciousness, breathing, color)

Is child unresponsive with no breathing or only gasping?

Yes
Shout for Help/
Activate Emergency Response
(as appropriate for setting)

Is there a pulse?

Yes
Open airway and begin ventilation
and oxygen as available

No

Is the pulse <60/min with
poor perfusion despite
oxygenation and ventilation?

Yes
Start CPR
(C-A-B)

If at any time you identify cardiac arrest

No
Go to
Pediatric Cardiac Arrest
Algorithm

After ROSC, begin Evaluate-Identify-Intervene
sequence (right column)

Evaluate
- Primary assessment
- Secondary assessment
- Diagnostic tests

Intervene

Identify

© 2011 American Heart Association
Management of Shock Flowchart

Hypovolemic Shock
Specific Management for Selected Conditions

<table>
<thead>
<tr>
<th>Nonhemorrhagic</th>
<th>Hemorrhagic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 20 mL/kg NS/LR bolus, repeat as needed
• Consider colloid</td>
<td>• Control external bleeding
• 20 mL/kg NS/LR bolus, repeat 2 or 3× as needed
• Transfuse PRBCs as indicated</td>
</tr>
</tbody>
</table>

Distributive Shock
Specific Management for Selected Conditions

<table>
<thead>
<tr>
<th>Septic</th>
<th>Anaphylactic</th>
<th>Neurogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Algorithm:
• Septic Shock</td>
<td>• IM epinephrine (or autoinjector)
• Fluid boluses (20 mL/kg NS/LR)
• Albuterol
• Antihistamines, corticosteroids
• Epinephrine infusion</td>
<td>• 20 mL/kg NS/LR bolus, repeat PRN
• Vasopressor</td>
</tr>
</tbody>
</table>

Cardiogenic Shock
Specific Management for Selected Conditions

<table>
<thead>
<tr>
<th>Bradyarrhythmia/Tachyarrhythmia</th>
<th>Other (e.g., CHD, Myocarditis, Cardiomyopathy, Poisoning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Algorithms:
• Bradycardia
• Tachycardia With Poor Perfusion</td>
<td>• 5 to 10 mL/kg NS/LR bolus, repeat PRN
• Vasoactive infusion
• Consider expert consultation</td>
</tr>
</tbody>
</table>

Obstructive Shock
Specific Management for Selected Conditions

<table>
<thead>
<tr>
<th>Ductal-Dependent (LV Outflow Obstruction)</th>
<th>Tension Pneumothorax</th>
<th>Cardiac Tamponade</th>
<th>Pulmonary Embolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prostaglandin E₁
• Expert consultation</td>
<td>• Needle decompression
• Tube thoracostomy</td>
<td>• Pericardiocentesis
• 20 mL/kg NS/LR bolus</td>
<td>• 20 mL/kg NS/LR bolus, repeat PRN
• Consider thrombolytics, anticoagulants
• Expert consultation</td>
</tr>
</tbody>
</table>

© 2011 American Heart Association
Recognition of Shock Flowchart

<table>
<thead>
<tr>
<th>Clinical Signs</th>
<th>Hypovolemic Shock</th>
<th>Distributive Shock</th>
<th>Cardiogenic Shock</th>
<th>Obstructive Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Patency</td>
<td>Airway open and maintainable/not maintainable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Respiratory rate</td>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Respiratory effort</td>
<td>Normal to increased</td>
<td>Labored</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Breath sounds</td>
<td>Normal</td>
<td>Normal (£ crackles)</td>
<td>Crackle, grunting</td>
<td></td>
</tr>
<tr>
<td>C Systolic blood pressure</td>
<td>Compensated Shock → Hypotensive Shock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Pulse pressure</td>
<td>Narrow</td>
<td>Variable</td>
<td>Narrow</td>
<td></td>
</tr>
<tr>
<td>C Heart rate</td>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Peripheral pulse quality</td>
<td>Weak</td>
<td>Bounding or weak</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>C Skin</td>
<td>Pale, cool</td>
<td>Warm or cool</td>
<td>Pale, cool</td>
<td></td>
</tr>
<tr>
<td>C Capillary refill</td>
<td>Delayed</td>
<td>Variable</td>
<td>Delayed</td>
<td></td>
</tr>
<tr>
<td>C Urine output</td>
<td></td>
<td>Decreased</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D Level of consciousness</td>
<td>Irritable early</td>
<td>Lethargic late</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Temperature</td>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2011 American Heart Association
Management of Respiratory Emergencies Flowchart

Upper Airway Obstruction
Specific Management for Selected Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specific Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croup</td>
<td>Anaphylaxis</td>
</tr>
<tr>
<td>Nebulized epinephrine</td>
<td>IM epinephrine (or autoinjector)</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Albuterol</td>
</tr>
<tr>
<td></td>
<td>Antihistamines</td>
</tr>
<tr>
<td></td>
<td>Corticosteroids</td>
</tr>
</tbody>
</table>

Lower Airway Obstruction
Specific Management for Selected Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specific Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchiolitis</td>
<td>Asthma</td>
</tr>
<tr>
<td>Nasal suctioning</td>
<td>Albuterol ± ipratropium</td>
</tr>
<tr>
<td>Bronchodilator trial</td>
<td>Corticosteroids</td>
</tr>
<tr>
<td></td>
<td>Subcutaneous epinephrine</td>
</tr>
<tr>
<td></td>
<td>Magnesium sulfate</td>
</tr>
<tr>
<td></td>
<td>Terbutaline</td>
</tr>
</tbody>
</table>

Lung Tissue Disease
Specific Management for Selected Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specific Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia/Pneumonitis</td>
<td>Infectious Chemical Aspiration Pulmonary Edema Cardiogenic or Noncardiogenic (ARDS)</td>
</tr>
<tr>
<td>Albuterol</td>
<td>Consider noninvasive or invasive ventilatory support with PEEP</td>
</tr>
<tr>
<td>Antibiotics (as indicated)</td>
<td>Consider vasoactive support</td>
</tr>
<tr>
<td></td>
<td>Consider diuretic</td>
</tr>
</tbody>
</table>

Disordered Control of Breathing
Specific Management for Selected Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specific Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased ICP</td>
<td>Poisoning/Overdose</td>
</tr>
<tr>
<td>Avoid hypoxemia</td>
<td>Antidote (if available)</td>
</tr>
<tr>
<td>Avoid hypercarbia</td>
<td>Contact poison control</td>
</tr>
<tr>
<td>Avoid hyperthermia</td>
<td></td>
</tr>
</tbody>
</table>
Pediatric Advanced Life Support

Signs of Respiratory Problems

<table>
<thead>
<tr>
<th>Clinical Signs</th>
<th>Upper Airway Obstruction</th>
<th>Lower Airway Obstruction</th>
<th>Lung Tissue Disease</th>
<th>Disordered Control of Breathing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Patency</td>
<td>Airway open and maintainable/not maintainable</td>
<td></td>
<td></td>
<td>Variable</td>
</tr>
<tr>
<td>B Respiratory Rate/Effort</td>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breath Sounds</td>
<td>Stridor (typically inspiratory)</td>
<td>Wheezing (typically expiratory)</td>
<td>Grunting Crackles</td>
<td></td>
</tr>
<tr>
<td>Barking cough</td>
<td>Prolonged expiratory phase</td>
<td>Decreased breath sounds</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Hoarseness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Air Movement</td>
<td>Decreased</td>
<td></td>
<td></td>
<td>Variable</td>
</tr>
<tr>
<td>C Heart Rate</td>
<td>Tachycardia (early)</td>
<td>Bradycardia (late)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Skin</td>
<td>Pallor, cool skin (early)</td>
<td>Cyanosis (late)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D Level of Consciousness</td>
<td>Anxiety, agitation (early)</td>
<td>Lethargy, unresponsiveness (late)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Temperature</td>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pediatirc Advanced Life Support

Identification of Respiratory Problems by Severity

<table>
<thead>
<tr>
<th>Respiratory Distress</th>
<th>Respiratory Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Open and maintainable</td>
<td>Not maintainable</td>
</tr>
<tr>
<td>B Tachypnea</td>
<td>Bradypnea to apnea</td>
</tr>
<tr>
<td>Work of breathing (nasal flaring/retractions)</td>
<td>Increased effort Decreased effort Apnea</td>
</tr>
<tr>
<td>Good air movement</td>
<td>Poor to absent air movement</td>
</tr>
<tr>
<td>C Tachycardia</td>
<td>Bradycardia</td>
</tr>
<tr>
<td>C Pallor</td>
<td>Cyanosis</td>
</tr>
<tr>
<td>D Anxiety, agitation</td>
<td>Lethargy to unresponsiveness</td>
</tr>
<tr>
<td>E Variable temperature</td>
<td></td>
</tr>
</tbody>
</table>
Pediatric Bradycardia
With a Pulse and Poor Perfusion Algorithm

Pediatric Advanced Life Support

Identify and treat underlying cause
- Maintain patent airway; assist breathing as necessary
- Oxygen
- Cardiac monitor to identify rhythm; monitor blood pressure and oximetry
- IO/IV access
- 12-Lead ECG if available; don't delay therapy

Cardiopulmonary compromise continues?

CPR if HR <60/min with poor perfusion despite oxygenation and ventilation

Support ABCs
- Give oxygen
- Observe
- Consider expert consultation

Cardiopulmonary Compromise
- Hypotension
- Acutely altered mental status
- Signs of shock

Bradyocardia persists?

Yes
- Epinephrine
- Atropine for increased vagal tone or primary AV block
- Consider transthoracic pacing/transvenous pacing
- Treat underlying causes

If pulseless arrest develops, go to Cardiac Arrest Algorithm

No

Doses/Details

Epinephrine IO/IV Dose:
0.01 mg/kg (0.1 mL/kg of 1:10 000 concentration). Repeat every 3-5 minutes. If IO/IV access not available but endotracheal (ET) tube in place, may give ET dose: 0.1 mg/kg (0.1 mL/kg of 1:1000).

Atropine IO/IV Dose:
0.02 mg/kg. May repeat once. Minimum dose 0.1 mg and maximum single dose 0.5 mg.
Pediatric Tachycardia With a Pulse and Adequate Perfusion Algorithm

Pediatric Advanced Life Support

Identify and treat underlying cause
- Maintain patent airway; assist breathing as necessary
- Oxygen
- Cardiac monitor to identify rhythm; monitor blood pressure and oximetry
- 12-Lead ECG if practical

QRS normal (≤0.09 sec)
- Evaluate rhythm

QRS wide (>0.09 sec)
- Evaluate QRS duration
- Evaluate rhythm

Probable sinus tachycardia
- Compatible history consistent with known cause
- P waves present/normal
- Variable R-R with constant PR
- Infants: rate usually <220/min
- Children: rate usually <180/min

Probable supraventricular tachycardia
- Compatible history (vague, nonspecific; history of abrupt rate changes)
- P waves absent/abnormal
- HR not variable with activity
- Infants: rate usually ≥220/min
- Children: rate usually ≥180/min

Possible supraventricular tachycardia (with QRS aberrancy)
- R-R interval regular
- Uniform QRS morphology

Probable ventricular tachycardia

Search for and treat cause

Consider vagal maneuvers

- Establish vascular access
- Consider adenosine 0.1 mg/kg IV (maximum first dose 6 mg)
 May give second dose of 0.2 mg/kg IV (maximum second dose 12 mg)
 Use rapid bolus technique

Expert consultation strongly recommended
- Search for and treat reversible causes
- Obtain 12-lead ECG
- Consider pharmacologic conversion
 - Amiodarone 5 mg/kg IV over 20 to 60 minutes
 or
 - Procainamide 15 mg/kg IV over 30 to 60 minutes
 - Do not routinely administer amiodarone and procainamide together
 - May attempt adenosine if not already administered

Consider electrical conversion
- Consult pediatric cardiologist
- Attempt cardioversion with 0.5 to 1 J/kg (may increase to 2 J/kg if initial dose ineffective)
- Sedate before cardioversion
Pediatric Tachycardia
With a Pulse and Poor Perfusion Algorithm

Identify and treat underlying cause
- Maintain patent airway; assist breathing as necessary
- Oxygen
- Cardiac monitor to identify rhythm; monitor blood pressure and oximetry
- IO/IV access
- 12-Lead ECG if available; don’t delay therapy

Narrow (≤0.09 sec) Evaluate QRS duration Wide (>0.09 sec)

Evaluate rhythm with 12-lead ECG or monitor

Probable sinus tachycardia
- Compatible history consistent with known cause
 - P waves present/normal
 - Variable R-R; constant PR
 - Infants: rate usually <220/min
 - Children: rate usually <180/min

Probable supraventricular tachycardia
- Compatible history (vague, nonspecific); history of abrupt rate changes
 - P waves absent/abnormal
 - HR not variable
 - Infants: rate usually ≥220/min
 - Children: rate usually ≥180/min

Possible ventricular tachycardia

Cardiopulmonary compromise?
- Hypotension
- Acutely altered mental status
- Signs of shock

Search for and treat cause
Consider vagal maneuvers (No delays)
Synchronized cardioversion
Consider adenosine if rhythm regular and QRS monomorphic

- If IO/IV access present, give adenosine
- OR
- If IO/IV access not available, or if adenosine ineffective, synchronized cardioversion

Doses/Details

Synchronized Cardioversion:
Begin with 0.5-1 J/kg; if not effective, increase to 2 J/kg. Sedate if needed, but don’t delay cardioversion.

Adenosine
IO/IV Dose:
First dose: 0.1 mg/kg rapid bolus (maximum: 6 mg).
Second dose: 0.2 mg/kg rapid bolus (maximum second dose: 12 mg).

Amiodarone
IO/IV Dose:
5 mg/kg over 20-60 minutes or
Procainamide
IO/IV Dose:
15 mg/kg over 30-60 minutes

Expert consultation advised
- Amiodarone
- Procainamide

Do not routinely administer amiodarone and procainamide together.

© 2011 American Heart Association
Management of Shock After ROSC

Optimize Ventilation and Oxygenation
- Titrate FiO₂ to maintain oxyhemoglobin saturation 94%-99%; if possible, wean FiO₂ if saturation is 100%
- Consider advanced airway placement and waveform capnography

Assess for and Treat Persistent Shock
- Identify, treat contributing factors
- Consider 20 mL/kg IV/IO boluses of isotonic crystalloid. Consider smaller boluses (eg, 10 mL/kg) if poor cardiac function suspected.
- Consider the need for inotropic and/or vasopressor support for fluid-refractory shock.

*Possible Contributing Factors
- Hypovolemia
- Hypoxia
- Hypoglycemia
- Hypoglycemia
- Hypothermia
- Hypo-/hyperkalemia
- Hypo-/hyperkalemia
- Hypo-/hyperkalemia
- Tension pneumothorax
- Tension pneumothorax
- Tamponade, cardiac
- Toxins
- Toxins
- Thrombosis, pulmonary
- Thrombosis, coronary
- Trauma

Hypotensive Shock
- Epinephrine
- Dopamine
- Norepinephrine

Normotensive Shock
- Dobutamine
- Dopamine
- Epinephrine
- Milrinone

Estimation of Maintenance Fluid Requirements

- Infants <10 kg: 4 mL/kg per hour
 Example: For an 8-kg infant, estimated maintenance fluid rate
 = 4 mL/kg per hour x 8 kg
 = 32 mL per hour

- Children 10-20 kg: 4 mL/kg per hour for the first 10 kg + 2 mL/kg per hour for each kg above 10 kg
 Example: For a 15-kg child, estimated maintenance fluid rate
 = (4 mL/kg per hour x 10 kg)
 + (2 mL/kg per hour x 5 kg)
 = 40 mL/hour + 10 mL/hour
 = 50 mL/hour

- Children >20 kg: 4 mL/kg per hour for the first 10 kg + 2 mL/kg per hour for kg 11-20 + 1 mL/kg per hour for each kg above 20 kg.
 Example: For a 28-kg child, estimated maintenance fluid rate
 = (4 mL/kg per hour x 10 kg)
 + (2 mL/kg per hour x 10 kg)
 + (1 mL/kg per hour x 8 kg)
 = 40 mL per hour + 20 mL per hour
 + 8 mL per hour
 = 68 mL per hour

Following initial stabilization, adjust the rate and composition of intravenous fluids based on the patient's clinical condition and state of hydration. In general, provide a continuous infusion of a dextrose-containing solution for infants. Avoid hypotonic solutions in critically ill children; for most patients use isotonic fluid such as normal saline (0.9% NaCl) or lactated Ringer's solution with or without dextrose, based on the child's clinical status.